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Combination therapy in Phe508del CFTR: how many will be 
enough?

Ana Margarida Matos1,2 and Paulo Matos1,2*
1Department of Human Genetics, National Health Institute ‘Dr. Ricardo Jorge’, Av. Padre Cruz, 1649-016 Lisboa; Portugal

2University of Lisboa; Faculty of Sciences, BioISI – Biosystems and Integrative Sciences Institute, Campo Grande-C8, 1749-016 Lisboa; Portugal.

Article Info

Article Notes 
Received: January 09, 2018
Accepted: February 08, 2018

*Correspondence:
Dr. Paulo Matos, BioISI – Biosystems and Integrative 
Sciences Institute, Faculty of Sciences, University of Lisbon,
Campo Grande-C8 1749-016 Lisbon, Portugal; 
Telephone: +351-217 500 000;
Email:phmatos@fc.ul.pt. 

© 2018 Matos P. This article is distributed under the terms of 
the Creative Commons Attribution 4.0 International License.

Cystic fibrosis (CF) is a complex inherited disorder caused 
by mutations in the cystic fibrosis transmembrane conductance 
regulator (CFTR) gene1. Around 2000 disease causing mutations 
are known for this gene, which encodes a Chloride (Cl−) channel 
expressed at the plasma membrane (PM) of epithelial cells1,2. 
Clinically the disease affects mostly the respiratory tract, where 
obstruction of the airways by thick mucus leads to: bacterial 
infections, extensive lung damage, and eventually, respiratory 
failure. Other affected systems include the gastrointestinal and 
reproductive tracts and endocrine system. Thus, the severity of 
symptoms can differ widely within individuals depending on their 
mutations, environment and biometrical characteristics. These 
variables modify the clinical course of the disease and each patient 
response to therapy3,4.

Current therapies are typically focused on treating CF multi-organ 
symptoms, as opposed to targeting the underling defect specific to 
each mutation5,6. This has been the goal of several CF drug discovery 
programs, either by companies or academic labs6,7, including our 
own8,9. This review aims to highlight the most recent therapies that 
target the molecular defect in CFTR, particularly the most common 
CFTR mutation worldwide, the deletion of phenylalanine 508 
(Phe508del)10,11.

It is estimated that approximately 85% of all CF patients 
have at least 1 copy of the Phe508del mutant10,11. This mutation 
is characterized by defective protein processing, resulting in 
considerable endoplasmic reticulum (ER) retention and premature 
degradation, preventing the mutant protein from trafficking to the 
cell surface. The Phe508del-CFTR molecules that reach the cell 
surface present partial channel function and a highly decreased PM 
half-life, due to accelerated endocytosis and fast turnover5,12. Hence, 
applying strategies to correct Phe508del-CFTR multiple functional 
defects is complex, as more than one type of CFTR-modulator drug 
has to be used13,14.

At present, there are several CFTR-modulator drug combinations 
and exciting new next-generation CFTR modulators under study for 
the clinical treatment of CF patients with the Phe508del mutation7,15 
(see Fig. 1). The most important will be addressed below.
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Combination therapy

Lumacaftor plus Ivacaftor (Orkambi®)

Ivacaftor, also known as VX-770, is labeled as a CFTR 
potentiator, as it increases the time that activated CFTR 
channels remain open at the cell surface16. It was first 
introduced for the treatment of the Gly551Asp CFTR 
mutation, where it increased predicted mean forced 
expiratory volume in one second (FEV1

17, which in patients 
decreases from ~90% in infancy to ~50% by the age of 
40 years-old18) by 10%, and was associated with less risk 
of pulmonary exacerbations and weight gain16. Since any 
Phe508del-CFTR protein reaching the cell surface also 
presents reduced channel function, the efficacy of Ivacaftor 
was assessed in subjects homozygous for the Phe508del 
mutation. In these phase II studies, the difference in the 
change of FEV1 % and other spirometric parameters did 
not reach statistical significance, thus, indicating that a 
CFTR potentiator alone is insufficient for the treatment 
of patients who are homozygous for the Phe508del 
genotype19,20. 

Lumacaftor, also known as VX-809, is an established 
CFTR corrector drug that has been extensively 
characterized. Although the correction mechanism of 
Lumacaftor is not fully understood, there is evidence that 
it promotes the proper folding of Phe508del-CFTR during 
its biogenesis and processing in the ER, allowing it to exit 
the ER and traffic to the cell surface21–24. Improvement of 
CFTR function to clinically meaningful levels was proposed 

to require a combination of Lumacaftor, to deliver 
CFTR channels to the PM, and Ivacaftor, to increase the 
proportion of time those channels are open25. Based on 
this knowledge, Lumacaftor advanced into clinical trials in 
patients homozygous and heterozygous for the Phe508del 
mutation, with the aim of evaluating its safety and efficacy 
alone and in combination with Ivacaftor. As assessed by a 
phase II study, administration of Lumacaftor alone did not 
provide a significant therapeutic benefit, as predicted FEV1 
% was similar between the studied groups26. Subsequently, 
the combination of Ivacaftor and Lumacaftor was 
explored in a series of clinical studies. In a phase II study, 
combination of Lumacaftor and Ivacaftor (in the higher 
doses administrated) significantly improved FEV1 by a 
mean of 6% for patients homozygous for Phe508del CFTR, 
decreased sweat chloride concentration by  a mean of 8.9 
to 10.3 mmol/L, and decreased pulmonary exacerbations 
in the treatment groups27. Phe508del CFTR heterozygous 
patients did not have a significant improvement in FEV1 
or any other parameters27. Data from two phase III trials 
in patients homozygous for Phe508del showed that there 
were significant improvements in FEV1, ranged from a mean 
of 2.6 to 4.0%, and that the rate of pulmonary exacerbations 
was 30 to 39% lower, since hospitalization or the use of 
intravenous antibiotics was reduced in the treatment 
groups28. While significant, these results fell below initial 
expectations and experimental evidence emerged to, at 
least partially, explain the limited improvements observed 
in patients. It was shown that chronic administration of 
Ivacaftor, as well as most other potentiators, results in a 

Figure 1 - Overview of the several molecules and strategies currently under study to rescue the multiple defects of Phe508del CFTR.
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dose-dependent reversal of Lumacaftor- and Tezacaftor 
(another investigational corrector, see below)-mediated 
CFTR correction in Phe508del homozygous primary airway 
cell cultures20,29. This was due to protein destabilization 
and increase turnover rate, resulting in its reduced 
functional expression at the cell surface. A posterior 
study confirmed that exposure to high concentrations 
(>1 μM) of ivacaftor did inhibit lumacaftor’s rescue of 
Phe508del-CFTR but reported that chronic exposure to 
low (≤100 nM), clinically relevant concentrations of the 
potentiator did not30. Thus, since combination therapy 
presumes an improvement of beneficial effects over the 
use of each drug alone, the inhibitory effect of ivacaftor on 
lumacaftor efficacy requires further evaluation, perhaps 
in post-treatment patient samples. In addition, it was also 
observed that P. aeruginosa reduces Phe508del-CFTR 
function in cells treated either with Lumacaftor alone or 
the with the Ivafactor/Lumacaftor combination31,32. Since 
85% of adult CF patients are colonized with P. aeruginosa, 
this data suggests that infection with these bacteria may 
also partially account for a reduction in the therapeutic 
efficacy of these drugs in Phe508del-homozigous patients.

Nevertheless, despite its modest efficacy, the 
combination therapy clinical trial data supported an 
apparent benefit for patients. Accordingly, Ivacaftor plus 
Lumacaftor (commercial name: Orkambi®33) was approved 
for the clinical treatment of CF patients homozygous for the 
Phe508del mutation by the Food and Drug Administration 
(FDA) and European Medicines Agency (EMA)34. This drug 
combination has now been used in patients since 2015, and 
several consequent studies of its long-term usage indicate 
that it does benefit CF patients, although several cases 
of off-target side-effects have been reported, including 
dyspnea (14%), diarrhea (11%), and nausea (10%) as well 
as serious adverse hepatobiliary reactions occurring in at 
least 0.5% of patients35–37. 

Tezacaftor plus Ivacaftor
Tezacaftor, also known as VX-661, is an investigational 

CFTR corrector, structurally similar to Lumacaftor, which 
also improves Phe508del CFTR folding and traffic to the 
cell surface38. Tezacaftor was introduced in clinical trials as 
an alternative to Lumacaftor, with the advantage that it is 
not an inducer of CYP3A4 enzymes and, therefore, does not 
interfere with other medications that are frequently used 
in CF, particularly Ivacaftor33,39. The safety and efficacy of 
Tezacaftor monotherapy, and Tezacaftor plus Ivacaftor 
combination therapy was evaluated in a phase II trial in 
patients homozygous for Phe508del or heterozygous for 
Phe508del and a second Gly551Asp CFTR mutation39. 
Administration of the combined therapy resulted in a 
significantly decrease in sweat chloride around 6.04 
mmol/L and predicted FEV1 of 3.75% for Phe508del 
homozygous subjects, and 7.02 mmol/L in sweat chloride 

and 4.6% predicted FEV1 for heterozygous39. These 
results supported continued clinical studies of this drug 
combination, since the improvements in lung function are 
comparable to those observed in patients treated with 
lumacaftor plus Ivacaftor28. Results from phase III studies 
were similar, with values of 4.0% for predicted FEV1 in 
homozygous patients, with a 35% reduction on the rate of 
pulmonary exacerbation in the treatment group and 6.8% 
for predicted FEV1 in heterozygous patients40,41. In both 
phase II and III studies the treatment had less respiratory 
adverse events40,41 when compared with previous reports 
from Lumacaftor trials35–37, reveling itself to be an appealing 
alternative to the approved therapy.

Triple combinations

Last year Vertex announced the first results for the 
triple combination studies with Tezacaftor/Ivacaftor plus 
VX-440, VX-152, or VX-659, three investigational drugs that 
are next-generation correctors of the defective Phe508del-
CFTR protein42–45. Data from the Phase II studies showed 
values of mean predicted FEV1 of 9.7% and 12.0% for 
the triple combination regimens with VX-152 or VX-440 
respectively, in patients heterozygous for Phe508del and 
one minimal function mutation.  In the same category of 
CF patients, initial data from a phase I study for the triple 
combination regimen of VX-659 showed an improvement 
in predicted FEV1 of 9.6%. Initial data with VX-152 or VX-
440 in patients homozygous for Phe508del, who were 
already receiving Tezacaftor and Ivacaftor, also showed an 
improvement in mean predicted FEV1 of 7.3% and 9.5%. 
Furthermore, it was reported that all triple combinations 
were generally well tolerated and the majority of adverse 
events were mild to moderate42. 

Plasma membrane stabilizers
Although preliminary results for the triple combination 

therapy in patients with the Phe508del mutation look 
promising, there is still an unmet target for truly effective 
new therapies. Given the complexity of protein defects 
presented in Phe508del CFTR, part of the incomplete 
effectiveness of the described combined therapies may 
derive from an inability to retain sufficient CFTR levels 
at the apical surface of epithelial cells. Therefore, there 
is a real need for molecular strategies achieving the PM 
retention of corrected rescued Phe508del CFTR. Our group 
has investigated the peripheral protein quality control 
(PPQC) checkpoint in lung epithelial cells in Phe508del 
CFTR exposed to VX-809. We found that the conformation 
of the scaffold protein NHERF1 (Na(+)/H(+) exchange 
regulatory factor 1) determined whether or not the PPQC 
recognized rescued Phe508del CFTR at the PM9. Moreover, 
we showed that activation of the cytoskeletal regulator 
Rac1 promoted an interaction between the actin-binding 
adaptor protein ezrin and NHERF1 in a way that triggered 
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exposure of the second PDZ domain of NHERF1, which 
interacted with rescued Phe508del CFTR. Because binding 
of Phe508del CFTR to the second PDZ of NHERF1 precluded 
the recruitment of ubiquitin ligase CHIP, the co-exposure of 
airway cells to the Rac1 activator HGF (hepatocyte growth 
factor) nearly tripled the functional rescue of Phe508del 
CFTR by VX-809, retaining the rescued channels at the PM8. 
Since HGF signaling is determinant for lung tissue repair 
after acute lung injury46, these findings open new areas of 
investigation worth pursuing in the development of small-
molecule drugs for CF treatment.

mRNA repairers
ProQR Therapeutics is initiating clinical trials for a novel 

mRNA-based strategy for correction of Phe508del CFTR 
mutation7 after obtaining extremely promising in vitro 
and in vivo preclinical data47. Their innovative compound, 
QR-010, is an investigational 33mer chemically modified, 
antisense oligoribonucleotide (AON) complementary to 
wt-CFTR mRNA, that was designed to repair Phe508del 
CFTR transcripts. QR-010 mechanism of action is not yet 
fully characterized but it was postulated to involve RNAse 
H-mediated degradation of the mutant transcript, followed
by RNA repair48. Treatment with inhaled QR-010 brought
near complete restoration of chloride transport across the
nasal mucosa of Phe508del homozygous mice. Moreover,
two doses of QR-010 were able to improve CFTR-mediated
saliva secretion up to 80% of the wild-type levels47.

Proteostasis regulators

Proteostasis regulators are a novel class of CFTR 
correctors that act indirectly on CFTR by modulating 
components of the channel’s interactome. One of the 
most promising was Cavosonstat7, developed by Nivalis 
Therapeutics, Inc. Cavosonstat is a S-nitrosoglutathione 
reductase (GSNOR) inhibitor that increases GSNO and NO 
levels, which are lower in CF tissues49. This was postulated 
to promote a chaperone-dependent increase in CFTR 
abundance, stability and function. Unfortunately, in a 
February 2017 press-release, the company announced 
that the drug did not meet primary endpoints in a Phase 
II trial50. Nonetheless, it highlighted NO signaling as a new 
research venue for CFTR modulators.

Another NO-related proteostasis regulator is Riociguat, 
the active ingredient of Adempas, an oral drug marketed 
by Bayer for the treatment of pulmonary hypertension. 
Riociguat increases the sensitivity of soluble guanylate 
cyclase (sGC) to NO, increasing cyclic guanosine 
monophosphate (cGMP) production. In addition to 
decreasing blood pressure, some studies report that 
the sGC-NO-cGMP pathway may regulate CFTR channel 
conductivity51. A Phase 2 study is now underway in CF 
patients homozygous for the Phe508del mutation7.

Amplifiers
Amplifiers are compounds designed to increase CFTR 

expression and thus increase ER protein load. In that 
sense, to support Phe508del CFTR correction, they must 
be used in combination therapy. The starting point for 
the development of this CF drug class was the finding that 
the small-molecule HDAC7 inhibitor, SAHA1, significantly 
amplified Phe508del CFTR quantity and surface expression 
in human bronchial epithelial cells, possibly by interfering 
with CFTR’s proteostasis network52. However, the clinical 
applicability of HDAC inhibitors in CF treatment remains 
controversial. In a recent study using air-liquid interface 
cultures of differentiated nasal epithelia cells from CF 
patients, SAHA1 failed to increase CFTR transcript levels but 
rather inhibited mucine expression and goblet epithelial cell 
differentiation53. Nonetheless, those initial findings opened 
a new field in CF modulator drugs’ research. Proteostasis 
Therapeutics, Inc., for instance, has developed a specific 
CFTR amplifier, PTI-428, that increases the CFTR mRNA 
pool, feasibly by improving mRNA stability and/or events 
surrounding CFTR translation. A phase II study evaluating 
the efficacy and safety of PTI-428 in CF patients receiving 
Orkambi®33 demonstrated a mean absolute improvement 
in predicted FEV1 of 5.2% in the tested group, with no 
significant adverse effects54.

Additional small-molecule compounds
Proteostasis Therapeutics, Inc., developed two additional 

investigational compounds selectively targeting Phe508del 
CFTR: PTI-801, a new-generation CFTR corrector, and PTI-
808, a CFTR potentiator7. The company just finished the 
first Phase I and II studies for these compounds, which 
showed promising results, and therefore, is now preparing 
new clinical studies and cohorts for the triple combination 
of PTI-428, PTI-801, and PTI-808, called PTI-NC-73354.

Galapagos/AbbVie has also developed four novel 
correctors currently under clinical trials7. Correctors 
GLPG2222 and GLPG2851 (C1) are additive to GLPG2737 
and GLPG3221 (C2) and may be combined in therapy. 
GLPG2222 shares structural similarities with Lumacaftor 
and Tezacaftor, but was reported to produce a more 
efficient rescue of Phe508del CFTR in vitro55.

FDL169, a drug being developed by Flatley Discovery 
Lab, has been shown to increase Phe508del CFTR cell-
surface abundance with similar potency and efficacy as VX-
809. However, FDL169 activity is not additive to VX-809,
suggesting a similar mode of action56. Notwithstanding,
FDL169 exhibited a higher free fraction in human serum
and improved distribution in mice lungs57, which makes it
a promising alternative to Lumacaftor.

QBW251, a compound developed by Novartis 
Pharmaceuticals, is currently in phase II clinical trials7. 
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pulmonary epithelium has a relative easy accessibility and 
reduces the risks associated with systemic delivery. Non-
viral vectors seem to be the safest and most efficient gene 
transfer agents for this kind of therapy and, in the most 
promising trials, the plasmid DNA pGM169 (carrying the 
CFTR cDNA) combined with the cationic liposome GL67A, 
was the chosen formula for lung delivery70,71. Monthly 
application of the pGM169/GL67A complex in CF patients 
was evaluated in a phase IIb trial, where a 3,7% increase 
in predicted FEV1 and stabilization of lung function was 
observed in the treatment group71. Despite the modest 
results, the trial offered proof of concept that non-viral 
gene therapy can benefit the lung function of CF patients 
and creates the opportunity for follow-up studies, namely 
combining gene therapy with the co-administration of 
CFTR modulator drugs.

Concluding Remarks
In the field of CF personalized medicine it is imperative 

to always consider the multidimensional nature of the 
disease. Even for CF patients caring the Phe508del 
mutation, a universal treatment is not likely to become a 
reality, given the complexity of phenotypes observed among 
the several possible compound-genotypes and even among 
homozygous patients. The contribution of lung tissue 
integrity, modifier genes, environmental factors, etc., has to 
be accounted, while tuning drug combination therapies to 
each individual patient. This is even more relevant if one 
considers therapies to fit the plethora of CFTR mutations 
displaying distinct functional defects. Nonetheless, the 
data presented in this review support a direct association 
between targeting the various defects of Phe508del-CFTR 
with combinations of multiple pharmaceutical agents 
and a consistent gain in lung function, body weight, and 
reduced disease exacerbations in patients. Thus, these 
recent achievements with small-molecule therapies, 
coupled to the growing amount of novel compounds 
and innovative strategies, give the scientific, clinical and 
patient communities new hope of finding highly efficient 
therapeutically solutions for CF.

Conflict of interest statement
The authors declare no conflict of interest.

Funding information
The authors have been supported by grants IF2012 

(from FTC, Portugal) and PGG-055-2014 (from Gilead 
Genése, Portugal) to PM and by BioISI center grant 
UID/MULTI/04046/2013 (from FCT/MCTES/PIDDAC, 
Portugal). AMM is recipient of FCT fellowship SFRH/
BD/524906/2014.

Abbreviations 
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It is described as a CFTR potentiator, similar to Ivacaftor. 
Preclinical data indicated that, when combined with 
Lumacaftor, QBW251 was more efficacious than Ivacaftor 
in sustaining Phe508del CFTR membrane expression and 
function58. In an initial study in CF patients homozygous 
and compound-heterozygous for the Phe508del mutation, 
QBW251 proved to be safe and well tolerated. It promoted 
a significant decrease in sweat chloride and improved lung 
function in heterozygous patients, but, as Ivacaftor, showed 
no efficacy in Phe508del homozygous individuals58. 
Nevertheless, these initial results suggest QBW251 
may constitute an attractive alternative to Ivacaftor in 
combination therapies.

Notably, several other compounds were reported 
to potentiate CFTR function, including the natural food 
components genistein, an isoflavonoid found in high 
concentrations in soy59, and curcumin, a major constituent 
of turmeric60. Curcumin is able to activate CFTR channels 
in both adenosine triphosphate (ATP) dependent and 
independent ways60–62, whereas genistein acts through 
ATP-dependent CFTR gating63. Patch clamp studies showed 
additive effects of curcumin and genistein on the gating 
of Gly551Asp CFTR channels64 and, importantly, a recent 
study showed that genistein and curcumin also enhanced 
forskolin-induced swelling of ivacaftor/lumacaftor treated 
intestinal organoids derived from biopsies of Phe508del 
homozygous patients65. Curcumin PKA-dependent, but ATP-
independent, potentiation results from its binding to the 
stimulatory ICL1/ICL4-R interface to stabilize the channel 
open state, while PKA/ATP-dependent potentiation results 
from removal of inhibitory Fe3+ at the ICL3-R interface, 
which promotes dimerization of NBD1 and NBD262,66–68. 
These data suggest that ivacaftor, genistein, and curcumin, 
in double or triple combinations, can synergize to restore 
CFTR-mediated fluid secretion in primary CF cells, thus 
supporting a possible benefit if multiple potentiators 
are used for treatment of CF. Still on this note, the 
very hydrophobic nature and low stability in water of 
compounds, such as curcumin, is a major drawback in their 
clinical application. In a very recent work, Gonçalves et al.69 
showed that the neutral amphiphilic triblock copolymer 
MeOx6-THF19-MeOx6 (TBCP2) can solubilize curcumin 
and facilitate its penetration in Phe508del CFTR human 
airway epithelial cells, enhancing curcumin potentiation 
of CFTR mediate Cl- selective currents in these cells. These 
data suggests that TBCP2 may constitute a helpful tool for 
the delivery of this and other highly insoluble therapeutic 
drugs to CF patients.

Gene Therapy
Gene therapy is a controversial subject that became a 

possibility for CF since the cloning of the CFTR gene1. In the 
case of CF, direct administration of the agents to the lungs 
via aerosols is an attractive option for gene therapy as 
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Triphosphate; CF : Cystic Fibrosis; CFTR : Cystic Fibrosis 
Transmembrane Conductance Regulator; cGMP : cyclic 
guanosine monophosphate; Chloride : Cl-; EMA : European 
Medicines Agency; ER : Endoplasmic Reticulum; FDA : Food 
and Drug Administration; FEV1 : Forced Expiratory Volume 
in One Second; GSNOR : S-nitrosoglutathione reductase; 
HGF : Hepatocyte Growth Factor; ICL : Intracellular Loop; 
NHERF1 : Na(+)/H(+) Exchange Regulatory Factor 1; 
Phe508del : Deletion of phenylalanine 508; PM : Plasma 
Membrane; PPQC : Peripheral Protein Quality Control; 
R : Regulatory; sGC : Soluble Guanylate Cyclase; TBCP2 : 
MeOx6-THF19-MeOx6.
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